SECTION 23 07 11 HVAC, PLUMBING, AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, Boiler Plant and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC and plumbing equipment or piping handling media above 41 degrees C (105 degrees F); Boiler Plant breechings and stack temperature range 150-370 degrees C(300-700 degrees F) and piping media and equipment 32 to 230 degrees C(90 to 450 degrees F).
- 8. Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

23 07 11 - 1 HVAC, PLUMBING, AND BOILER PLANT INSULATION

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. HPS: High pressure steam (415 kPa [60 psig] and above).
- 13. HPR: High pressure steam condensate return.
- 14. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 15. MPR: Medium pressure steam condensate return.
- 16. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 17. LPR: Low pressure steam condensate gravity return.
- 18. PC: Pumped condensate.
- 19. HWH: Hot water heating supply.
- 20. HWHR: Hot water heating return.
- 21. GH: Hot glycol-water heating supply.
- 22. GHR: Hot glycol-water heating return.
- 23. FWPD: Feedwater pump discharge.
- 24. FWPS: Feedwater pump suction.
- 25. CTPD: Condensate transfer pump discharge.
- 26. CTPS: Condensate transfer pump suction.
- 27. VR: Vacuum condensate return.
- 28. CPD: Condensate pump discharge.
- 29. R: Pump recirculation.
- 30. FOS: Fuel oil supply.
- 31. FOR: Fuel oil return.
- 32. CW: Cold water.
- 33. SW: Soft water.
- 34. HW: Hot water.
- 35. CH: Chilled water supply.
- 36. CHR: Chilled water return.
- 37. GC: Chilled glycol-water supply.
- 38. GCR: Chilled glycol-water return.
- 39. RS: Refrigerant suction.
- 40. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 21 13, HYDRONIC PIPING: Chilled water piping.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.2</u> or <u>4.3.3.1.3</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (*See* <u>4.2.4.2.</u>)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of <u>4.3.3.1.1</u> shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - **4.3.3.1.3** Smoke detectors required by $\underline{6.4.4}$ shall not be required to meet flame spread index or smoke developed index requirements.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

- (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics.
- 4.3.10.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.5 Loudspeakers and recessed lighting fixtures, including their assemblies and accessories, shall be permitted in the ceiling cavity plenum where listed as having a maximum peak optical density of 0.5 or less, an average optical

density of 0.15 or less, and a peak heat release rate of 100 kW or less when tested in accordance with UL 2043, Standard for Safety Fire Test for Heat and Visible Smoke Release for Discrete Products and Their Accessories Installed in Air-Handling Spaces.

- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 3. Test methods: ASTM E84, UL 723, or NFPA 255.
- 4. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 5. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced.

 The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2)-91 Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride - Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

MIL-A-3316C (2)-90..... Adhesives, Fire-Resistant, Thermal Insulation

MIL-A-24179A (1)-87...... Adhesive, Flexible Unicellular-Plastic

Thermal Insulation

MIL-C-19565C (1)-88...... Coating Compounds, Thermal Insulation, Fire-and Water-

Resistant, Vapor-Barrier

MIL-C-20079H-87 Cloth, Glass; Tape, Textile Glass; and Thread, Glass and

Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-99 Standard Specification for Stainless and Heat-Resisting

Chromium-Nickel Steel Plate, Sheet, and Strip

B209-04 Standard Specification for Aluminum and Aluminum-Alloy

Sheet and Plate

C411-97 Standard test method for Hot-Surface Performance of

High-Temperature Thermal Insulation

C449-00 Standard Specification for Mineral Fiber Hydraulic-Setting

Thermal Insulating and Finishing Cement

C533-04 Standard Specification for Calcium Silicate Block and Pipe

Thermal Insulation

E.

C534-05	Standard Specification for Preformed Flexible Elastomeric
	Cellular Thermal Insulation in Sheet and Tubular Form
C547-06	Standard Specification for Mineral Fiber pipe Insulation
C552-03	Standard Specification for Cellular Glass Thermal
	Insulation
C553-02	Standard Specification for Mineral Fiber Blanket Thermal
	Insulation for Commercial and Industrial Applications
C585-90	Standard Practice for Inner and Outer Diameters of Rigid
	Thermal Insulation for Nominal Sizes of Pipe and Tubing
	(NPS System) R (1998)
C612-04	Standard Specification for Mineral Fiber Block and Board
	Thermal Insulation
C1126-04	Standard Specification for Faced or Unfaced Rigid Cellular
	Phenolic Thermal Insulation
C1136-06	Standard Specification for Flexible, Low Permeance Vapor
	Retarders for Thermal Insulation
D1668-97a (2006)	Standard Specification for Glass Fabrics (Woven and
	Treated) for Roofing and Waterproofing
E84-06	Standard Test Method for Surface Burning Characteristics
	of Building
	Materials
E119-05a	Standard Test Method for Fire Tests of Building
	Construction and Materials
E136-04	Standard Test Methods for Behavior of Materials in a
	Vertical Tube Furnace at 750 degrees C (1380 F)
. National Fire Protection Ass	ociation (NFPA):
90A-02	Installation of Air Conditioning and Ventilating Systems
96-04	Standards for Ventilation Control and Fire Protection of
	Commercial Cooking Operations
101-06	Life Safety Code

	251-06	Standard methods of Tests of Fire Endurance of Building		
		Construction Materials		
	255-06	Standard Method of tests of Surface Burning		
		Characteristics of Building Materials		
F.	F. Underwriters Laboratories, Inc (UL):			
	723	UL Standard for Safety Test for Surface Burning		
		Characteristics of Building Materials with Revision of		
		08/03		
G.	Manufacturer's Standardizat	ion Society of the Valve and Fitting Industry (MSS):		
	SP58-2002	Pipe Hangers and Supports Materials, Design, and		
		Manufacture		

PART 2 - PRODUCTS

2.1 MINERAL FIBER

- A. ASTM C612 (Board, Block), Class 1 or 2, k = 0.037 Watt per meter, per degree C (0.26), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m 3 (2 pcf), k = 0.04 (0.27), for use at temperatures up to 204 degrees C (400 degrees F)
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) for use at temperatures 230 degrees C (450 degrees F).

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15), for temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15), for temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, vapor retarder and all service jacket.

2.4 CELLULAR GLASS CLOSED-CELL

A. Comply with Standard ASTM C177, C518, density 120 kg/m^3 (7.5 pcf) nominal, k = 0.033 (0.29) at 0 degrees C (75 degrees F).

B. Pipe insulation for temperatures up to 200 degrees C (400 degrees F).

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19), for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service jacket vapor retarder with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 Watt per meter, per degree C (0.27), at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 DUCT WRAP FOR KITCHEN HOOD GREASE DUCTS

- A. Light weight, high temperature mineral fiber or ceramic fiber insulating material with low thermal conductivity K value of 0.060 W/m² degrees C (0.417 Btu in/hr ft² degrees F) at mean temperature of 260 degrees C (500 degrees F).
- B. Material shall be fully encapsulated by UL classified aluminum foil and tested to ASTM E84 standard.
- C. Material shall be UL tested for internal grease fire to 1093 degrees C (2,000 degrees F) with zero clearance and for through-penetration firestop.
- D. Material flame spread and smoke developed ratings shall not be higher than 5, as per ASTM E 84/UL 723 Flammability Test.

2.8 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics							
ITEMS	TYPE I	TYPE II					
Temperature, maximum degrees C (degrees	649 (1200)	927 (1700)					
F)							
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)					
Thermal conductivity:							
Min W/ m K (Btu in/h ft² degrees F)@	0.059	0.078 (0.540)					
mean temperature of 93 degrees C (200	(0.41)						
degrees F)							
Surface burning characteristics:							
Flame spread Index, Maximum	0	0					
Smoke Density index, Maximum	0	0					

2.9 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance

 = 0.02 or less perm rating,
 Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 5 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 100 mm (4 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.

- E. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- F. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- G. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 20 mm (0.75 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- H. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.10 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- C. Boiler Plant Pipe supports: MSS SP58, Type 39. Apply at all pipe support points, except where MSS SP58, Type 3 pipe clamps provided as part of the support system.

2.11 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.12 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with tin-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or stainless steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 20 mm (3/4 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.13 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.

- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.14 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.15 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below.

- Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular

- surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 40 mm (1-1/2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct and after-filter housing.

B. Flexible Mineral Fiber Blanket:

- 1. Adhere insulation to metal with 100 mm (4 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed supply air ductwork.

- a. Above ceilings at a roof level: 50 mm (2 inch) thick insulation faced with FSK.
- b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK. Concealed return air ductwork in other locations need not be insulated.
- 5. Return air duct in interstitial spaces: 40 mm (1-1/2 inch thick insulation faced with FSK.
- 6. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- 7. Exhaust air branch duct from autopsy refrigerator to main duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.

C. Cellular Glass Insulation:

1. Pipe and tubing, covering nominal thickness in millimeters and inches as tabulated below for chilled water and refrigerant piping.

Nominal Thickness of Cellular Glass Insulation							
Millimeters (inches)	Thru 38 (11/2)	50- 150 (2-6)	200-300 (8-12)	over 350 (14)			
1. 4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	50 (2.0)	80 (3.0)	80 (3.0)	100 (4.0)			
2. 4-16 degrees C (40-60 degrees F) (CH and CHR outside chiller room)	40 (1.5)	50 (2.0)	50 (2.0)	65 (2.5)			

--END---